AK-fold averaging cross-validation procedure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A K-fold Averaging Cross-validation Procedure.

Cross-validation type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold cross validation procedure to select a candidate 'optimal' model from each hold-out fold and average the K candidate 'optimal' models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significan...

متن کامل

V-fold cross-validation improved: V-fold penalization

We study the efficiency of V -fold cross-validation (VFCV) for model selection from the non-asymptotic viewpoint, and suggest an improvement on it, which we call “V -fold penalization”. Considering a particular (though simple) regression problem, we prove that VFCV with a bounded V is suboptimal for model selection, because it “overpenalizes” all the more that V is large. Hence, asymptotic opti...

متن کامل

The 'K' in K-fold Cross Validation

The K-fold Cross Validation (KCV) technique is one of the most used approaches by practitioners for model selection and error estimation of classifiers. The KCV consists in splitting a dataset into k subsets; then, iteratively, some of them are used to learn the model, while the others are exploited to assess its performance. However, in spite of the KCV success, only practical rule-of-thumb me...

متن کامل

Improving Adaptive Boosting with k-Cross-Fold Validation

As seen in the bibliography, Adaptive Boosting (Adaboost) is one of the most known methods to increase the performance of an ensemble of neural networks. We introduce a new method based on Adaboost where we have applied Cross-Validation to increase the diversity of the ensemble. We have used CrossValidation over the whole learning set to generate an specific training set and validation set for ...

متن کامل

Estimators of Variance for K-Fold Cross-Validation

1 Motivations In machine learning, the standard measure of accuracy for models is the prediction error (PE), i.e. the expected loss on future examples. We consider here the i.i.d. regression or classification setups, where future examples are assumed to be independently sampled from the distribution that generated the training set. When the data distribution is unknown, PE cannot be computed. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonparametric Statistics

سال: 2015

ISSN: 1048-5252,1029-0311

DOI: 10.1080/10485252.2015.1010532